
Abstract � This paper reports on work in progress to develop a 
wavelet-based method of outcome prediction after DC 
countershock. The method correlates return of spontaneous 
circulation (ROSC) with features of the wavelet-based power 
spectra derived from the ECG during ventricular fibrillation. 
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I. INTRODUCTION 

 
Ventricular fibrillation (VF) is the most common cause of 

sudden cardiac death [1,2]. Considerable interest has focused 
upon this condition as it is recognised that prompt electrical 
cardioversion can be life saving, though the efficacy of this 
treatment declines rapidly if the patient remains in VF for 
more than a few minutes. There has been considerable 
interest in analysis of the VF waveform in the search for 
pathophysiological clues, and ways to improve resuscitation 
success rates. Until recently, the surface electrocardiogram 
recorded during ventricular fibrillation (VF) was thought to 
represent disorganised and unstructured electrical activity of 
the heart�in stark contrast to the information rich ECG in 
other states of health and disease [3,4]. Recent work by the 
authors [5-7] has found that, in fact, by using continuous 
wavelet transform analysis a rich structure can be found in 
many cases of VF. This takes the form of both high frequency 
spiking and low frequency modulation of the high energy 
region in wavelet space. This paper details current work by 
our group to develop a method which will predict the return 
of spontaneous circulation (ROSC) subsequent to DC 
countershock based on wavelet-power spectral analysis of the 
VF waveform immediately prior to shock delivery. 
 

II. METHODOLOGY 

 
A. The Wavelet Transform 
 

The wavelet transform is a valuable signal analysis tool 
that can elucidate spectral and temporal information from 
complex signals, including ECGs. It overcomes some of the 
limitations of the more widely used Fourier transform, which 
only contains globally averaged information, and has the 
potential to lose specific features within the signal. Recently, 
wavelet analysis has been applied to biomedical data 
including electroencephalogram, electromyogram, acoustic 
signals and the ECG [8-12]. Wavelet based studies of ECG 
signals have either examined heart rate variability, classified 
ECG waveforms, or have been used for ECG data 

compression. Our group has focussed on the analysis of 
complex waveforms during ventricular fibrillation (VF) [5-7] 
(as well as other medical and engineering signals [13-15]). 
 

The complete analysis of a signal requires the deduction 
of both the frequency make up and temporal location of the 
signal components. As a result of the infinite extent of the 
Fourier integral, analysis is time averaged. This renders 
feature location complex, even for stationary signals. This 
limitation can be partly overcome by introducing a sliding 
time window which localises the analysis in time. This local 
or Short Time Fourier Transform (STFT) provides a degree 
of temporal resolution by highlighting changes in spectral 
response with respect to time. However, this method is 
always a compromise between temporal and frequency 
resolution (higher frequency resolution means lower temporal 
resolution, and vice versa). The nature of the wavelet 
transform is such that it is well suited to analysis of signals in 
which a more precise time resolution is required for higher 
frequencies than for lower ones; i.e. the wavelet transform is 
suitable for locating discontinuities or singularities, in which 
high frequency components dominate. It effectively zooms in 
on the temporal signal when analysing higher frequencies, 
providing higher resolution where necessary.  
 

The wavelet transform of a continuous real-valued time 
signal, x(t), with respect to the real valued wavelet function, 
ψ, is defined as 
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where )/)((* abt −ψ  is the complex conjugate of the 

analysing wavelet used in the convolution and, in this 
application, x(t) is the ECG signal exhibiting VF. The 
wavelet transform can therefore be thought of as the 
cross-correlation of the analysed signal with a wavelet 
function that has been translated by a value b and dilated by a 
factor a. These values are often referred to as the location and 
dilation parameters respectively. 

 
Contemporary literature suggests two methods of wavelet 

analysis using either discrete or continuous transforms. The 
discrete wavelet transform necessitates the use of 
orthonormal wavelets, and dilation levels are set in the form 
of �octaves� (integer powers of two). This provides a rapid 
method of signal decomposition, and guarantees energy 
conservation and exact signal reconstruction. However, the 
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discrete transform is limited by loss of frequency resolution 
due to the incremental doubling of the level associated 
frequencies. Conversely, the continuous wavelet transform 
does provide high resolution. Thus, proper use of wavelet 
analysis demands identification of the correct wavelet and 
transform type for the given application. Our group have 
recently employed two types of wavelets for ECG signal 
analysis: the 2nd derivative of a Gaussian function and the 
Morlet wavelet. The former has temporal compactness, useful 
for examining location specific features in the signal. The 
latter is more compact in the frequency domain and allows 
both amplitude and phase of the signal features to be probed 
simultaneously.  
 

The total energy contained in the signal, x(t), is defined as 
its integrated squared magnitude 
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The wavelet energy density plot � the scalogram - can be 
integrated across a and b to recover the total energy in the 
signal using the admissibility constant, Cg, as follows  
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The relative contribution to the total energy contained within 
the signal at a specific a scale is given by the scale dependent 
energy distribution:  
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Peaks in E(a) highlight the dominant energetic scales within 
the signal. We may convert the scale dependent wavelet 
energy spectrum of the signal, E(a), to a frequency dependent 
wavelet energy spectrum EW(f) in order to compare directly 
with the Fourier energy spectrum of the signal EF(f). To do 
this, we must convert from the wavelet a scale (which can be 
interpreted as a representative temporal, or spatial, period for 
physical data) to a characteristic frequency of the wavelet, 
e.g. the passband frequency or the central frequency. Using 
this passband frequency, the characteristic frequency 
associated with a wavelet of arbitrary a scale is given by 
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where fc, the passband centre of the mother wavelet (i.e. a=1), 
becomes a scaling constant and f is the representative or 
characteristic frequency for the wavelet at arbitrary scale a. 
The wavelet-based power spectrum is then given by  
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where τ is the temporal length of signal. The area under the 
PW(f) curve gives the total power in the signal. 
 
B. The Study Data 
 

This study is based on an 838 patient data set of ECG 
recordings of VF immediately prior to countershock. These 
measurements were grouped according to shock outcome as 
shown in table 1. Outcome was defined as ROSC (i.e. w1) if a 
palpable pulse was present in the post-shock period (more 
information is given in reference [16]). The rest of the shocks 
correspond to No-ROSC (w2-w5), including conversion to 
Electromechanical Disassociation (EMD) or Pulseless 
Electrical Activity (PEA), asystole, VF - where the VF starts 
after 5 seconds from the shock - and VF - where the VF starts 
within 5 seconds from the shock.  
 

TABLE I 
ECG DATA LIBRARY 

   

Class Shock Outcome Number of 
Traces 

w1 ROSC 81 
w2 EMD/PEA  335 
w3 Asystole 93 
w4 VF starting > 5 seconds after 

shock  
28 

w5 Non-reset shock � i.e. no 
conversion 

301 

Total   838 
 

C. Data Preprocessing 
 

The continuous wavelet transform was computed for each 
VF signal prior to countershock. The wavelet-based power 
spectrum was then computed from each of the resulting 
scalograms. Figures 1 and 2 show two typical ECG traces 
which include the pre-shock VF, the shock itself, and the 
post-shock outcomes. The outcomes are ROSC for figure 1 
and Asystole for figure 2. Noticeable in both plots is the rich 
topography of the pre-shock scalogram. In this study we used 
features from the wavelet power spectra, PW(f), derived from 
the pre-shock scalogram to predict shock outcome. The 
wavelet power spectra corresponding to the pre-shock trace 
segments in figures 1 and 2 are shown in figure 3. 

 
Fig. 1. Top: a segment of VF trace containing pre-shock VF and post-shock 

outcome w1 (i.e. ROSC). Bottom: the corresponding scalogram.  



 
Fig. 2. Top: a segment of VF trace containing pre-shock VF and post-shock 

outcome w3 (i.e. asystole). Bottom: the corresponding scalogram. 
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Fig. 3. Wavelet power spectra corresponding to the pre-shock trace in figure 

1 (left) and the pre-shock trace in figure 2 (right).  
 
 

A number of characterising features from the wavelet-
based power spectral densities were then examined as 
potential markers for shock outcome prediction. These 
included: median frequency (FM) defined (in terms of a 
discretised power spectrum) as 
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and peak power frequency (PPF) defined as 
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D. Data Classification 
 

As stated above, the five outcomes (wi i=1 , � , 5 shown 
in table 1) were further clustered into two groups: w1 
corresponding to ROSC and w2-5 corresponding to a No-
ROSC outcome. The feature vector v, derived from the 
spectral characteristics, was considered belonging to one of 
these 2 groups. In each case, the probability density functions 
of feature v with respect to class wj, p(v/wj), were estimated 
as a discrete histogram. The a posteriori probability for each 

class conditioned on the observation v is calculated using 
Bayes rule defined as 
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and k=2 corresponding to the ROSC and No-ROSC cases. 
 
Using these probabilities we split the feature space V into 
decision regions Ri, i= , � , k+1. (The extra class represents 
the reject class.) This is done by assigning a cost function 
C(wi, wj) , which describes the loss suffered if class wj is 
decided when the true class is in fact wi.  
 
Sensitivity and specificity are computed, where sensitivity is 
defined for the general case as  
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and specificity is defined as 
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The cost function is tuned iteratively to minimise the object 

function 2)]()([ isensisensd wPwPJ −=  so that the classifier 

meets the performance criterion defined by Psensd. 
 
 

III. RESULTS 
 

Both the ROSC and No-ROSC data was partitioned equally 
into a training group and a test group. The characteristic 
features for the training group data were computed and the 
probability density functions of the feature vectors with 
respect to class wj, p(v/wj), were estimated. The sensitivity 
was specified for the recognition of ROSC outcome as 
Psensd(w1)=95%. This was done for various bin sizes (in the 
partitioning of the scalogram information) and Gaussian 
kernel widths (in the reconstruction of the feature PDF�s). 
The cost functions found for each case was then used to test 
the remaining data. As an example, the sensitivities and 
specificities corresponding to the test data are shown in figure 
4 where the feature vector contains a single term: that of the 
median frequency FM. It can be seen in the figure that the 
sensitivities for the test set data are all close to the 95% 
attained for the training set. The specificities peak in value 
for a Gaussian kernel width of 2Hz (=six standard deviations) 
and 128 bins. This type of analysis was also carried out for 
other features and combination of features. 

 
IV. DISCUSSION 

 
In previous work [5-7] we showed that by employing 

continuous wavelet transforms, rather than representing  



disorganised and unstructured electrical activity of the heart, 
the surface electrocardiogram recorded during ventricular 
fibrillation (VF) contains a rich underlying structure. In this 
paper we have detailed preliminary work which attempts to 
use parameters derived from wavelet-based power spectral 
densities of the pre-shock signal to predict shock outcome. 
The work is directly comparable with other groups who have 
attempted to classify shock outcomes from spectral 
characteristics of these signals derived from the Fourier 
methods [16,17,18]. 
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Fig. 4. Left: the test set results with the training set tuned to 95% 
sensitivity. Right: the corresponding specificity for the test set. 

 
 

V. CONCLUSION 
 

Although at an early stage, preliminary results from the 
work detailed here indicate that the predictive power of 
wavelet-based power spectral features is at least on a par with 
traditional Fourier-based and STFT-based spectral analyses. 
The method may be further enhanced by fine-tuning, which 
may include: the selection of an optimal wavelet, the use of a 
finer bin resolution to generate the PDF�s, and the use of 
principle component analysis to better separate the feature 
data. It is, classification based on individual features within 
the pre-shock scalogram, however which promises to 
demonstrate the considerable strength of a wavelet-based 
analysis. This type of feature analysis cannot be achieved 
using STFT [5,6] due to its fixed window width. It is in this 
direction that the research is now focussed. 
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